PAC Bounds for Discounted MDPs

نویسندگان

  • Tor Lattimore
  • Marcus Hutter
چکیده

We study upper and lower bounds on the sample-complexity of learning nearoptimal behaviour in finite-state discounted Markov Decision Processes (mdps). We prove a new bound for a modified version of Upper Confidence Reinforcement Learning (ucrl) with only cubic dependence on the horizon. The bound is unimprovable in all parameters except the size of the state/action space, where it depends linearly on the number of non-zero transition probabilities. The lower bound strengthens previous work by being both more general (it applies to all policies) and tighter. The upper and lower bounds match up to logarithmic factors provided the transition matrix is not too dense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-optimal PAC bounds for discounted MDPs

We study upper and lower bounds on the sample-complexity of learning near-optimal behaviour in finite-state discounted Markov Decision Processes (MDPs). We prove a new bound for a modified version of Upper Confidence Reinforcement Learning (UCRL) with only cubic dependence on the horizon. The bound is unimprovable in all parameters except the size of the state/action space, where it depends lin...

متن کامل

Sample Complexity of Episodic Fixed-Horizon Reinforcement Learning

Recently, there has been significant progress in understanding reinforcement learning in discounted infinite-horizon Markov decision processes (MDPs) by deriving tight sample complexity bounds. However, in many real-world applications, an interactive learning agent operates for a fixed or bounded period of time, for example tutoring students for exams or handling customer service requests. Such...

متن کامل

Improving PAC Exploration Using the Median Of Means

We present the first application of the median of means in a PAC exploration algorithm for MDPs. Using the median of means allows us to significantly reduce the dependence of our bounds on the range of values that the value function can take, while introducing a dependence on the (potentially much smaller) variance of the Bellman operator. Additionally, our algorithm is the first algorithm with...

متن کامل

Efficient PAC-Optimal Exploration in Concurrent, Continuous State MDPs with Delayed Updates

We present a new, efficient PAC optimal exploration algorithm that is able to explore in multiple, continuous or discrete state MDPs simultaneously. Our algorithm does not assume that value function updates can be completed instantaneously, and maintains PAC guarantees in realtime environments. Not only do we extend the applicability of PAC optimal exploration algorithms to new, realistic setti...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012